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/ABSTRACT

Background. Glioblastoma (GBM) is the most common and
aggressive primary malignant brain tumor. Leptomeningeal
spread (LMS) is a severe complication of GBM, raising diag-
nostic and therapeutic challenges in clinical routine.
Methods. We performed a review of the literature focused
on LMS in GBM. MEDLINE and EMBASE databases were
queried from 1989 to 2019 for articles describing diagnosis
and therapeutic options in GBM LMS, as well as risk factors
and pathogenic mechanisms.

Results. We retrieved 155 articles, including retrospective
series, case reports, and early phase clinical trials, as well as
preclinical studies. These articles confirmed that LMS in
GBM remains (a) a diagnostic challenge with cytological
proof of LMS obtained in only 35% of cases and (b) a thera-
peutic challenge with a median overall survival below
2 months with best supportive care alone. For patients faced

with suggestive clinical symptoms, whole neuroaxis magnetic
resonance imaging and cerebrospinal fluid analysis are both
recommended. Liquid biopsies are under investigation and
may help prompt a reliable diagnosis. Based on the literature,
a multimodal and personalized therapeutic approach of LMS,
including surgery, radiotherapy, systemic cytotoxic chemother-
apy, and intrathecal chemotherapies, may provide benefits to
selected patients. Interestingly, molecular targeted therapies
appear promising in case of actionable molecular target and
should be considered.

Conclusion. As the prognosis of glioblastoma is improving
over time, LMS becomes a more common complication.
Our review highlights the need for translational studies and
clinical trials dedicated to this challenging condition in order
to improve diagnostic and therapeutic strategies. The
Oncologist 2020;25:e1763—e1776

Implications for Practice: This review summarizes the diagnostic tools and applied treatments for leptomeningeal spread, a
complication of glioblastoma, as well as their outcomes. The importance of exhaustive molecular testing for molecular
targeted therapies is discussed. New diagnostic and therapeutic strategies are outlined, and the need for translational stud-
ies and clinical trials dedicated to this challenging condition is highlighted.

INTRODUCTION

Glioblastoma (GBM) is the most common and the most
aggressive primary malignant brain tumor in adults [1-3]. Its
annual incidence is close to 3 per 100,000 persons per year.

The treatment of patients newly diagnosed with GBM relies
on maximal safe surgical resection followed by radiotherapy
with concurrent and adjuvant temozolomide chemotherapy
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[4]. Despite the intensive therapeutic regimen, the prognosis
of patients with GBM remains poor with a median overall
survival below 18 months and a 5-year survival rate of
5.6% [2].

The propensity of GBM to metastasize to cerebrospinal
fluid (CSF) flow stream, inducing GBM leptomeningeal spread
(LMS), was first described in 1931 [5]. LMS results from spread-
ing of tumor cells from brain parenchyma to leptomeninges
and CSF and is one of the most severe complications of GBM.
Other severe complications of GBM include (a) intratumor
hemorrhage, (b) status epilepticus, and (c) hydrocephalus. As
the prognosis of patients with GBM improves, LMS becomes a
more frequent clinical issue in neuro-oncology [1, 6, 7].

Considered initially a rare complication in gliomas [8], the
incidence of LMS seems above the estimated rate of 4%,
reaching 25% on postmortem neuropathological studies [1,
5, 6, 9, 10]. In cases of LMS, the median overall survival of
patients with GBM varies between 2 and 5 months [1, 6, 7,
11, 12]. No risk factor has been clearly demonstrated, although
multiple factors have been suggested: (a) age, (b) histologic
features, (c) molecular alterations, (d) anatomical tumor site,
and (e) therapeutic interventions (e.g., surgical opening of the
ventricles or antiangiogenic therapies) [1, 6, 13-16].

Diagnosis of LMS in patients with GBM is challenging. The
sensitivity of classic diagnostic investigations (i.e., magnetic res-
onance imaging [MRI] and cytological CSF analysis) remains low,
failing to identify tumor CSF spread most of the time [17, 18].

There is no standard of care treatment for LMS in patients
with GBM, although multiple groups have proposed several
therapeutic options (e.g., methotrexate, cytarabine, thiotepa,
and/or nimustine) with limited efficacy so far [1, 6, 7, 11, 15,
19-21]. Interestingly, treatment with intrathecal chimeric anti-
gen receptor T cells has demonstrated dramatic efficacy in a
single patient [22]. The advent of molecular targeted therapies
and immunotherapies supports further exploration of the
molecular landscape of CSF-circulating GBM cells [23-26].

Diagnostic and therapeutic challenges raised by LMS in
patients with GBM will be presented and discussed in the
current review.

MATERIALS AND METHODS
We conducted a survey, from January 1, 1989, to December
31, 2019, in the PubMed database and Scopus-EMBASE using
the following combination of terms connected by Boolean
operators: (glioma OR high grade glioma OR glioblastoma)
AND (meningeal OR leptomeningeal OR leptomeningeal dis-
semination OR meningeal gliomatosis OR leptomeningeal
gliomatosis OR meningeal metastasis OR CSF dissemination)
to identify relevant studies related to LMS and glioma.

Our search retrieved 2,043 articles. We excluded
(a) duplicate articles, (b) articles in languages other than
English and French, and (c) irrelevant articles (i.e., primary
meningeal gliomatosis, pediatric tumors). Eighty-five full-
text articles were selected. Based on this first selection and
linked list of references, additional articles were identified
and included in our review. Overall, 155 articles were iden-
tified as relevant to the topic. The research algorithm is
schematized in Figure 1.

© AlphaMed Press 2020

EPIDEMIOLOGY

LMS in high-grade gliomas was reported by several authors
(Table 1). In a series of 600 patients with GBM, Vertosick et al.
estimated the incidence rate of symptomatic LMS at 2% [1,
6, 7, 10, 11, 27-32]. This incidence rate is probably under-
estimated because of undiagnosed and asymptomatic cases.
Indeed, in autopsy studies, LMS was identified in up to 25%
of patients with high-grade glioma [1, 10, 15, 27, 28, 33].

PATHOGENESIS

Little is known about the pathogenesis of LMS. CSF dissemi-
nation seems to follow two patterns: (a) intense CSF
seeding with limited tumor progression at initial tumor site
or (b) minimal CSF seeding with massive tumor progression
at initial location [1, 5, 10, 34].

GBM cells migrate from the initial tumor site along brain
vessels to subpial, subarachnoid, and subependymal spaces
(Fig. 2A) [5, 10, 35, 36]. The leptomeningeal seeding from cor-
tical areas is preceded by subpial spread as an intermediary
step [5, 10, 17, 35]. During this migratory process, GBM cells
secrete multiple proteases degrading the extracellular matrix
(e.g., MMP-1, -2, -7, -9, -14, and -19 with a critical role of
MMP-2 and -9) to create a moving space [37-42] and express
multiple adhesion-migration proteins (e.g., glycosylated chon-
droitin sulfate proteoglycans, fibronectin, fascin, and integrins)
[35, 39, 41, 43]. Both molecule classes, working synergistically
with cytoskeleton, allow tumor cell migration toward lep-
tomeninges and CSF [5, 18, 28, 30, 35, 39, 41, 43-45].

Furthermore, in a mouse model, prolonged vascular
endothelial growth factor (VEGF) inhibition converted tumor
cell phenotype to invasive/mesenchymal, leading to tumor
invasion through perivascular and subpial spaces [46]. Multi-
ple proteins, including FGF, IGFBP2, MMP-2, Podoplanin,
fascin, MET, TGF-B, and IL8, are involved in this process, but
further insight is needed [44, 46-50].

The role of the glioma stem cell like cells and their cross
talk with microenvironment cells in tumor cell migration
remains poorly understood [41, 45]. Translational and pre-
clinical research are shedding light on molecular and cellu-
lar mechanisms of this phenomenon and its implication in
invasiveness potential of GBM and in LMS development
[26, 37, 51-53].

CLINICAL PRESENTATION

Two thirds of patients with GBM develop LMS within the first
2 years after diagnosis [1, 7, 11, 20, 28, 30, 33, 54]. The median
delay from initial diagnosis of GBM to clinicoradiological evi-
dence of LMS varies from 5 to 16.4 months [1, 5-7, 10, 11,
15, 20, 28, 30, 33, 55-58]. This delay is shorter in specific
tumor locations, including pineal, spinal, periventricular, and
infratentorial [12, 15, 59-66].

Clinical presentation of LMS is heterogeneous, from
asymptomatic to severely symptomatic disease [1, 6, 11,
12, 15, 29, 31, 67]. Usually the onset and the worsening of
symptoms are progressive; acute presentation is excep-
tional [5, 12, 27, 36, 68-70].

Oncologist
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2,034 articles retrieved
(Medline and EMBASE

1,949 articles excluded

- duplicates
- non relevant to the topic after

abstract/full text lecture
- other language than French/English

the topic

85 full text articles in
English/French relevant to

68 articles included after
additional research of Medline

database and lecture of
bibliographical references

155 articles relevant to the
topic were identified and
reviewed

45 retrospective studies and
case series (20 with LMS as
main topic)

45 case report

14 in vitro and in vivo
preclinical studies
5 early phase clinical trials

20 literature reviews

Figure 1. Literature research flow chart showing the selection of publications used in the review.

Abbreviation: LMS, leptomeningeal spread.

Patients with LMS can suffer from cranial nerve palsies,
increased intracranial pressure syndrome, hydrocephalus,
meningism, and/or focal neurological deficits [1, 7, 15, 20, 33,
71-76]. Seizure frequency does not seem to increase during
LMS development [77]. Confusion and generalized cognitive
decline are the most common features of LMS in elderly
patients with GBM [15, 78, 79]. Although rare, aseptic fever,
central neurogenic hyperventilation, and cardiac arrest are
reported [5, 11, 12, 70, 80]

Intractable vomiting may be an early symptom of CSF
seeding to the fourth ventricle [81]. Cranial nerve deficits,
including of the second, third, fourth, sixth, and/or seventh,
are observed in 6% of cases [8, 78]. The fourth and seventh
cranial nerves are the most frequently involved [78, 82]. Once
installed, cranial nerve palsies are often irreversible [5, 27].

Progressive paraplegia [9, 27, 36, 69, 73, 83, 84], sphinc-
ter incontinence [1, 11, 36, 55, 80, 84], and spinal ataxia
[20, 29, 80] were described when the spinal cord or cauda
equina are involved [9, 29, 30, 33, 69, 73, 85, 86]. Isolated
symptoms such as paresthesia, ataxia, back pain, and leg or
shoulder pain are rare [27, 29, 87, 88]. Radicular pain has
been described with various topography: the upper limbs,
interscapular [89], thoracic, or lumbar level as well as
sciatalgia [1, 5, 11, 15, 20, 33, 55, 90].

Of note, although LMS may manifest as communicating
hydrocephalus [33], only 25%—40% of patients with LMS
present this complication [75, 91].

Risk FacTors
A number of risk factors of LMS have been investigated in
patients with GBM. Young age (around 35-45 years), brain
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location, male gender, long survival after initial diagnosis,
and tumor volume seem to be associated with a greater risk
of LMS in patients with GBM [1, 6, 27, 78].

The initial tumor location seems to be of importance.
Indeed, infratentorial location (in 45%—100% of cases) [1,
5, 10, 13, 62, 63] and GBM of the pineal region [59] are
associated with a higher frequency of LMS. The spatial
proximity to ventricles and the tumor size were consid-
ered as risk factor of LMS, but existing data are conflicting
[1, 6, 7, 11]. Indeed, invasive behavior of tumor cells and
the environment of the subventricular zone have been
pinpointed [1, 14, 15, 30, 85, 92, 93].

Ventricular opening during surgery and repeated surger-
ies, even more in patients treated with radiotherapy or che-
motherapy [5, 89], have been proposed as risk factors of LMS
[15, 65, 94, 95]. However, none has been clearly validated [1,
14, 29, 75, 92-97], and prophylactic radiotherapy in these
cases does not bring supplementary benefit [98]. Persistence
of preoperative leptomeningeal enhancement after initial sur-
gical resection was also correlated with a higher LMS inci-
dence in recurrence [99].

Hydrocephalus with subsequent ependymal fissuring
has also been suggested as a potential but not formally vali-
dated risk factor [89, 100].

Histological and molecular characteristics of initial
tumor were also investigated. Astrocytic phenotype, high
Ki67/Mib1 expression index [1, 29, 60, 85, 101, 102], and
GFAP loss of expression either at initial diagnosis [10] or
at recurrence [28, 29] were correlated with higher risk of
LMS. Epithelioid GBM [26, 103, 104] and GBM with a
neuronal component or primitive neuroectodermal
tumor-like GBM [56, 74] disseminate more frequently
to CSF.

© AlphaMed Press 2020
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Table 1. Leptomeningeal spread in glioblastoma: Retrospective studies and case series

Mean Status of primary at Latency, Mean OS after
age, time of LMS mean, Mean LMS diagnosis,
Study n years Histology presentation months KPS LMS treatment months
Mandel etal. 36 45 GBM 4.9-12 <70 Focal RT, surgery, CT, 2.2-4.7
2014 [1] (34%) CT+RT
Noh et al. 75 47 GBM NA 12 60 RT CT-TMZ, OT-GKS, 3-6.6
2015 [6] i.t. MTX
Autran et al. 31 45 20 GBM, NA 8 <70 BCNU-TMZ + Beva 5.7 combo
2019 [7] 10 LGG (71%) 0.6 with palliative
care
Onda et al. 14 53 11 GBM, PD NA NA NA NA after LMS
1989 [10] 3 AG diagnosis
Andersen 128 58 GBM NA 11 70 RT, CT, 3.2
et al. 2019 antiangiogenic 1.6-7.6
[11] Targeted 1.6 with palliative
Palliative care care
Bae et al. 7 50 GBM PD 12 55 i.t. MTX, palliative 2.3
2011 [15] 40-80 care
Burger et al. 9 46 4 GBM,5 PD 17 70 IFXRT + CT 3.8
2016 [55] AG (Iri/CCNU) + Beva
Pradat et al. 20 51 8 GBM PD 41% 9.5 65 Spinal RT, i.v. Thio- 3
1999 [20] PCB, Thio-5FU- 0.2-10.5
VP16-CCNU
i.t. MTX/ Thio
Vertosick 11 39 GBM PD 14.1 NA RT, Surgery 2.8
et al. 1990
[27]
Arita et al. 22 31 10 GBM, PD 64% 22 NA RT, CT (i.t./i.v.), RT-CT 6.5
1994 [28] 11 AA
Dardis et al. 34 50 24 GBM, PD57% 7.9 70 RT, CT, i.t. (Depocyt/ 3.7-9.9
2014 [30] 10 AA MTX)
Delattre et al. 5 31 3GBM, 2 PD33% 8.6 NA Spinal RT, CT CBDCA, 5.3
1989 [33] AA i.t. IFN
Chamberlain 18 38 8 GBM, PD 70% 5.6 60 RT, systemic CT, MTX 3
et al. 2003 10 AA i.t.
[57]
Withametal. 14 42 9GBM,5 NA 7.7 NA RT, systemic CT 10.1
1999 [58] AA (BCNU): Thiotepa i.t.
Amitendu 4 53 3 GBM NA 7.1 NA RT, surgery 4
et al. 2012
[83]
Saito et al. 11 47 5GBM, 6 PD 12.7 80 RT, CT, MTX i.t. 8
2003 [86] AA
Karaca et al. 3 37 GBM NA 10 NA Spinal RT, Adjuvant 4
2006 [87] cT
Roelz et al. 27 56 22 GBM, PD 78% 12.1 NA RT, Surgery, 7.9
2015 [94] 5 AG Chemotherapy, RT
and CT

Abbreviations: 5FU, fluorouracil; AA, anaplastic astrocytoma; AG, anaplastic glioma; BCNU, carmustine; Beva, bevacizumab; CBDCA, carboplatin
175 mg/m? every week for 4 weeks repeated after 2 weeks; CCNU, lomustine; CT, chemotherapy; GBM, glioblastoma; GKS, gamma knife sur-
gery; IFN, interferon; IFXRT, involved-field radiation therapy; Iri, irinotecan; i.t., intrathecal; i.v., intravenous; KPS, Karnofsky performance status;
LGG, low grade glioma; LMS, leptomeningeal spread; MTX, methotrexate; NA, not available; OS, overall survival; PCB, procarbazine; PD, progres-
sive disease; RT, radiotherapy; Thio, thiotepa; TMZ, temozolomide; VP16, etoposide.

Some molecular alterations have been also suggested as
risk factors of LMS [85]. Gain of 1p36 [105], PTEN mutation
[102, 106], and PIK3CA mutations [107] seem to predispose
to meningeal seeding [102, 105, 106]. O6-methylguanine-
DNA methyltransferase promoter methylation was also pro-
posed as a risk factor by isolated studies [65, 108] The
suspected mechanisms is increased survival in patients with
MGMT promoter methylation GBM, giving time for tumor

© AlphaMed Press 2020

cells to reach CSF [65]. This was not confirmed by
larger studies [11, 109], and to date, no molecular signature
has been validated as risk factor of LMS in high-grade
glioma.

Antiangiogenic therapies (VEGF and COX2 inhibitors)
have been suggested as promoters of distant recurrence
including LMS [44, 48], but available data are conflicting.
Further studies are needed [1, 49, 50, 110].
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Figure 2. Leptomeningeal spread (LMS) in glioblastoma: routes
of migration and spatial distribution of spinal LMS. (A): Routes
of migration of glioblastoma cells from initial tumor site to
meningeal spaces. (1, 2): Migration of glioblastoma (GBM) cells
from the initial tumor site along brain vessels to subpial and
subarachnoid spaces. (3): GBM cells circulating via the cerebro-
spinal fluid. (B): Distribution of leptomeningeal and spinal dis-
semination of intracranial glioblastoma.

DiaGNoSTIC APPROACH

Imaging

Currently, the standard examination for LMS diagnosis is
contrast MRI with a sensitivity reported between 90% and
100% for brain [1, 6, 11, 99, 111-114] and between 56%
and 95% for spinal LMS in symptomatic patients [1, 6, 11,
114]. Radiological screening of the neuraxis is required in
patients with GBM and suspected LMS symptoms [31,
71, 111].

However, the benefit of neuraxis screening for
patients with GBM without LMS symptoms remains
unclear. This could be considered because the presenta-
tion can be asymptomatic and LMS can occur with stable
disease at initial tumor site, particularly in subgroups at
high risk of LMS [1, 29, 56, 59, 63, 103, 111]. Exceptional
cases of asymptomatic LMS-like leptomeningeal enhance-
ment on MRI were reported in the setting of radio-
induced pseudoprogression [115].

Typically, LMS appears on MRI as linear and/or nodular
foci with high signal intensity on T2 weighted images, low
signal intensity on T1 weighted images, and enhanced after
gadolinium injection [111]. An MRI LMS pattern was pro-
posed using enhancement characteristics: (a) nodular, type
la (Fig. 3); (b) diffuse, type Ib (Fig. 4) in the subarachnoid
space [18, 34]; and (c) subependymal dissemination, type I
(Figs. 3, 5) is also described regardless CSF cytology status
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[34]. Mixed pattern is also possible (Fig. 5) [1, 34]. Distribu-
tion of LMS varies, commonly involving the anterior parts of
brain stem and cranial nerves [101]. Still, the expanded use
of antiangiogenic agents seems to modify this pattern mak-
ing it more difficult to distinguish, in these cases a potential
interest of contrast-enhanced fluid-attenuated inversion-
recovery sequences can be discussed [34, 55].

In intracranial LMS, brain MRI can show multiple aspects:
(a) nodular enhancement, 38% (subarachnoid or ventricular;
Fig. 4) and (b) pial enhancement, 47% (focal or diffuse) [1,
11, 34]. Nerve roots enhancement can be seen in some
cases (57%) as well as cranial nerve infiltration (11%—19%)
[1, 34, 78]. Exceptional presentation mimicking chronic sub-
dural hematoma or empyema has been reported [116, 117].

Spinal LMS has been reported to be more frequently in
lower thoracic, upper lumbar (most often posterior) [36,
101], lumbosacral regions, cauda equina, and dural sac
[36]. Thirty-one percent of lesions are described on the
cervical level, 52% on the thoracic level, and 41% at the
lumbar level (Fig. 2B) [1, 34, 101, 111]. Cauda equina
and conus medullaris were involved in up to 38% of
cases [1, 111].

Intraoperative detection of LMS using 5-aminolevulinic
acid was reported as useful in anaplastic astrocytoma (his-
tone K27M mutated) [9], but its benefit is inconsistent
[66]. Nuclear imaging detecting hypermetabolic foci using
18¢_fluorodeoxyglucose [22, 23] or translocator protein with
Bflutriciclamide [118, 119] can be helpful.

CSF Study

CSF analysis is often negative for detection of tumor cells;
only 25%—45% are positive after a first assay [1, 11, 30,
65]. Repeated lumbar puncture increases the diagnostic
sensitivity to 86% with three consecutive lumbar punctures
[65, 71, 78] and to 93% with more than three lumbar punc-
tures [6]. Nevertheless, even in cases of radiologically con-
firmed LMS, CSF cytological results were positive in only
4%—75% of cases, making an abnormal neuropathological
CSF study sufficient but not necessary for diagnosis of LMS
in gliomas [1, 6, 11, 28, 65, 85]. Indirect aspects can be
observed as high intracranial pressure (>15 cm H,0), high
protein level (>50-100 mg/dL) with or without low glucose,
and high lactate with an acellular aspect [15, 85, 120],
although a mild pleocytosis with presence of macrophages
has been described [94].

On cytological examination, GBM cells were noted most
often to be singly dispersed in the CSF (Fig. 2A). The main
challenge is their distinction from monocytes (Fig. 6) [18].

The input of liquid biopsies in diagnosis and monitoring of
LMS in patients with GBM has been explored with increasing
interest over the last years [121-123]. Collecting and analyz-
ing tumor components floating in CSF (i.e., circulating tumor
cells [CTCs], cell-free tumor DNA RNAs [circulating tumor
RNA, microRNA, and exosomes]) may help noninvasive diag-
nosis of central nervous system tumors and heighten the sen-
sitivity of LMS detection [121, 122, 124]. CTCs and ctDNA
seem to be of clinical interest [125]. In systemic malignancies
CSF CTC assay has a reported sensitivity between 81%
and 100% and a specificity of 85%—97%. However, for

© AlphaMed Press 2020
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Figure 3. Nodular leptomeningeal spread in glioblastoma. (A, B): Subependymal. (C, D): Spinal. Blue arrow indicates initial location;
yellow arrow indicates nodular leptomeningeal spread.

T1 without injection T2 T1 with injection

Figure 4. Linear (diffuse) leptomeningeal spread in glioblastoma.
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Figure 5. Mixed leptomeningeal spread in glioblastoma. (A, B): Subependymal. (C): Spinal. Yellow arrows indicate nodular aspects;

red arrows indicate linear aspects.

Figure 6. Cytopathological aspects of leptomeningeal spread in glioblastoma. (A): Cerebrospinal fluid obtained from lumbar punc-
ture was studied by cytocentrifugation and May-Griinwald-Giemsa staining. Microscopic examination showed large tumor cells with
marked atypia (high nucleocytoplasmic ratio, irregular nuclear borders, prominent nucleoli, basophilic cytoplasm). (B): GFAP immu-
nostaining (brown signal) showed cytoplasmic positivity confirming the glial lineage of the tumor cells.

nonepithelial malignancies such as GBM, the appropriate
detection technique needs to be established [121, 125].

As for the CSF ctDNA, analysis can be particularly use-
ful for detection of clonal mutations (BRAFVGOOE, IDH1,
IDH2, TERT promoter, ATRX and TP53 mutations, EGFR
amplification) [23, 121, 122, 126]. Of note, although
there is a clear correlation between CSF ctDNA and sur-
vival, the CSF detection of ctDNA does not systematically
mean LMS; its clinical value in this context remains to be
established [121].

THERAPEUTIC APPROACH

In most cases, LMS in patients with glioma is considered an
untreatable end stage complication of the disease [34]. There
is no consensus or standard of care regarding treatments
[81]. Multiple treatment modalities, such as intrathecal

www.TheOncologist.com

chemotherapeutics and radiation therapy, seem to have
improved median survival from 4-6 weeks to 3—6 months in
high-grade gliomas [127]. Survival of patients with LMS and
GBM in studies is reported at 0.2-9.7 months with a mean of
4.7 months [1, 28, 128].

Progression of the disease or treatment-related complica-
tions (such as hemorrhage [129] and infections [20, 33] after
intrathecal administrated treatment or ventriculoperitoneal
shunting [20, 130, 131]) may sometimes contribute to the
fatal outcome [82, 129].

Surgery

Because of the multifocal character of LMS, a surgical approach
is not suitable [87]. Surgical resection of compressive nodular
focal leptomeningeal lesions may provide symptomatic benefit
without affecting survival [9, 68, 83]. Another use for surgery
in LMS is placement of a ventriculo-peritoneal (VP) shunt in

© AlphaMed Press 2020
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Table 2. Molecular targeted therapies for leptomeningeal spread in patients with glioblastoma

Age
(years), Latency, PFS OS,
Study n sex Histology months  Location LMS Targeted therapy CSF (FD) months
Wooetal. 1 22,F Epithelioid: 0 Intracranial and  First line: Dabra + Y 3 7
2019 [23] GBM spinal Trame NGS Y
BRAF"6%CF Second line: HML 17.1/mb
. : Cell-free DNA
Nivolumab
Spinal RT
1 23, M Epithelioid: 1 Intracranial First line: Vemu + Cobi Cell-free DNA 1.5 75
GBM NA for spinal in CSF
BRAFV600E BRAFV600F
35.7%
Second line: TMZ 2
CCRT + Vemu + Palbo
Abadal 1 34,F Nonepithelioid 11 Cranial and Prior to LMS: CCRT NA >11  >22
et al. 2017 GBM BRAF"60% spinal and adjuvant TMZ
[24] and switch to
bevacizumab alone
First recurrence with
LMS: Vemu
Burger 1 25,M Nonepithelioid: 9 Cranial First line, prior to LMS NA >3 NA
et al. 2017 BRAF 9% TMZ CCRT and
[25] adjuvant TMZ
Second line post LMS
development:
lomustin
Third line: Dabra
Kanemaru 1 57,M Epithelioid: <2 Cranial and First line: TMZ CCRT NA NA 8 mo
et al. 2019 GBM spinal Second line: Dabra +
[26] BRAF600E Trame + spinal RT
Leaver 1 26,M Epithelioid 1 Intracranial LMS Vemu NA 1 <2
et al. 2016 GBM and extra-axial
[76] BRAF"6%CF (lung)

Abbreviations: CCRT, concomitant chemoradiotherapy; CSF, cerebrospinal fluid; Cobi, cobimetinib; Dabra, dabrafenib; F, female; FD, follow-up
duration; GBM, glioblastoma; HML, high mutational load; LMS, leptomeningeal spread; M, male; NA, not available; NGS, next-generation
sequencing; OS, overall survival; RT, radiotherapy; Palbo, palbociclib; PFS, progression-free survival; TMZ, temozolomide; Trame, trametinib;

Vemu, vemurafenib; Y, yes.

case of hydrocephalus [11, 14, 20, 72, 130, 132]. This seems to
be necessary in up 20%-30% of patients [11]. The main
complications are shunt occlusion caused by high fibrinogen
CSF concentration [131, 133], VP valve malfunction [133], hem-
orrhage, and meningitis [20, 130, 133] as well as extracranial
dissemination in peritoneal cavity [111, 133]. The latter is
exceedingly rare, although postmortem diagnosis in asymp-
tomatic patients is possible [111, 133]. In case of shunt occlu-
sion, the use of urokinase can be considered [131], and careful
monitoring should be ensured [20, 130].

Radiotherapy

Palliative radiation therapy is the most commonly used treat-
ment modality. Doses between 20 to 40 Gy are usually deliv-
ered allowing a good symptomatic control, especially for
pain relief [27, 68, 87, 31, 134], compressive symptomatol-
ogy [83, 87], or intractable vomiting caused by seeding to
fourth ventricle [81]. Although focal LMS from systemic can-
cers is sometimes treated by stereotactic radiosurgery, its
use in GBM LMS is rarely reported [1, 6, 60]. The clinical ben-
efit is limited in terms of neurological deficit recovery or sur-
vival when administered alone [27, 33, 68, 84, 87, 135], and
it improves slightly when added to surgery [27, 68, 69]. Isolated

© AlphaMed Press 2020

trials of radiolabeled monoclonal antibodies failed to signifi-
cantly improve the survival of patients with LMS [136].

Pharmacological Treatment

Multiple chemotherapeutic regimens have been investigated:
(a) temozolomide alone or combined with carmustine [7] or
lomustine [55], (b) thiotepa alone [57, 58] or combined with
procarbazine [20, 58, 64], (c) methotrexate [6, 15, 20,
57, 137], (d) cytarabine [19, 57, 128, 138, 139], (e) topotecan
or irinotecan [15, 140, 141], and (f) platinum-based agents
with or without etoposide [56, 74]. Drug administration was
either oral [7], intravenous [1, 6, 11, 15, 64, 142] intrathecal
via Ommaya reservoir or lumbar puncture [6, 11, 19, 21, 57,
58, 138, 140, 141] or subcutaneous port [137], or combined
[1,6,7,11, 20, 110].

Antiangiogenic drugs (e.g., bevacizumab) alone [1, 44,
117, 142] or combined with cytotoxic agents (e.g., irinotecan)
were used with inconsistent clinical benefit [15, 55, 64,
85, 110, 134, 143]. Concurrent radiochemotherapy can be
proposed in selected cases, eventually in association with anti-
angiogenic agents [15, 31, 55, 134].

Targeted therapy can be advised in selected cases
(Table 2); for example, the MAPK pathway inhibitors
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90 days

NA

Transient aseptic
arachnoiditis

PR 25%

it.

RT and CT Methotrexate

8 GBM
AA

52.5

Glioma
LMS

Chamberlain 18

et al. 2003
[57] Phase Il

Myelosuppression 22%

NA

30

Radiculopathy

Fatigue

it. 1SD

i.t. ACNU

CcT

2 GBM

Agnostic

1

Levin et al.

SD in one
patient
NA

1 month response

Systemic CT

1989 [21]

Nausea, vomiting

followed by recurrence

Phase /11

NA

Hematological

5/7 response for

Depocyt
2/7 MTX

it.

Methotrexate vs.
Depocyt

NA

7 primary CNS

tumors

49

Agnostic

59

Glantz et al.

CNS infections

1999 [139]

Abbreviations: X number of patients having received RT; AA, anaplastic astrocytoma; ACNU, nimustine; CNS, central nervous system; CSF, cerebrospinal fluid; CT, chemotherapy; GBM, glioblastoma; Gr, grade;

i.t., intrathecal; LMS, leptomeningeal spread; mAb, monoclonal antibody; MTX, methotrexate; NA, Not available; PD, progressive disease; PR, partial response; RT, radiotherapy; SD, stable disease.

(i.e., BRAF and/or MEK inhibitor) can be considered in
BRAF'®°°E mutant GBM [23]. Dramatic clinical and radiologi-
cal response were reported with a survival benefit from
1 to 11 months [23-25, 76]. This motivates to extensive
molecular testing [23-25].

As the brain-blood barrier breakdown is low and given
the potential resistance mechanism, combined therapy with
anti-MEK should be considered from the start as it seems
associated with longer survival [23, 26]. Radiotherapy can
be discussed to increase survival while balancing the treat-
ment benefit and its toxicity [144, 145]. Because of the rar-
ity of druggable targets in GBM, this option is available for
about 6% of patients with LMS GBM [11].

Immunotherapy

Immune checkpoint inhibitors were proposed in cases
of high mutational load and with microsatellite instability,
alone or in combination with molecular targeted therapies
[23, 146]. Nevertheless, there is no clear evidence of their
efficacy in LMS [6, 22, 85, 146]. The use of adoptive cell
therapy seems to be of interest. The IL13R a2—targeted chime-
ric antigen receptor (CAR) T cells (with 4-1BB as costimulatory
domain and tCD19 as a marker for transduction) had encour-
aging results with no high-grade therapy-related side effects
when used in a LMS of IDH wild type, MGMT methylated
GBM [22, 147]. After repeated intraventricular adminis-
tration of IL13BB{ CAR T cells, a clinical and radiologic
response was sustained up to 7.5 months [22]. Other
constructs targeting EGFRvIIl and HER2 having different
costimulatory domains were explored, but their impact
on LMS is not reported [148, 149]. However, the difficulty
in finding an adequate target, the immunosuppressive
microenvironment, and the consequent toxicities are the
limitations of immunotherapy in GBM, including in
patients with LMS [147].

Among other approaches, we count gene therapy using
engineered mesenchymal stem cells transduced with
herpes simplex virus—thymidine kinase gene followed by
systemic ganciclovir in a rat experimental leptomeningeal
glioma model that seems to have encouraging results [150]
and oncolytic viruses tested in transgenic mice inoculated
with GBM cells [151]. Intrathecal immunoconjugates have
also been advocated [90, 152] as well as intratumoral/intra-
thecal targeted therapy [153].

The completed clinical trials (Table 3) explored the use
of multiple intrathecal chemotherapies including topotecan,
methotrexate, and cytarabine in LMS. Although the safety
profile was satisfactory, none of them showed significant
improvement of survival in patients with LMS [21, 57, 139,
140]. Of note, the ongoing disease-agnostic clinical trials
(Table 4) allow inclusion of patients with LMS and GBM.
Nonetheless, their severe neurological impairment and their
poor prognosis limit their enroliment.

After the literature review, a management algorithm is
proposed in Figure 7.

SURVIVAL
LMS in primary malignant central nervous system tumor
implies more aggressive behavior and a worse prognosis.

© AlphaMed Press 2020
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Table 4. Ongoing clinical trials for LMS (as identified on clinicaltrials.gov)

Ongoing trial Phase Histology Title Drug
NCT03719768 Phase|  Agnostic Avelumab with Radiotherapy in Patients with Avelumab and RT
Leptomeningeal Disease
NCT03091478 Phase Il  Agnostic Pembrolizumab in Leptomeningeal Disease Pembrolizumab
NCT03423628 Phasel GBM and GBM A Study to Assess the Safety and Tolerability of AZD 1390
LMS AZD1390 Given with Radiation Therapy in Patients RT
with Brain Cancer
NCT00445965 Phase Il  Agnostic lodine | 131 Monoclonal Antibody 3F8 in Treating 1311-3F8
Patients with Central Nervous System Cancer or
Leptomeningeal Cancer
NCT00089245 Phase!l  AGNOSTIC Radiolabeled Monoclonal Antibody Therapy in lodine | 131 MOAB
Treating Patients with Refractory, Recurrent, or 8H9
Advanced CNS or Leptomeningeal Cancer
NCT02939300 Phase Il  agnostic Ipilimumab and Nivolumab in Leptomeningeal Ipilimumab, nivolumab

Metastases

Abbreviations: CNS, central nervous system; GBM, glioblastoma; LMS, leptomeningeal spread; RT, radiotherapy.

Leptomeningeal disease (LMD) suggested by clinical aspect in
patient with glioblastoma

!

1

Suggestive clinical exam

Whole neuraxis MRI

Lumbar puncture

- pressure 215 cmH20,
- proteins 250 mg/dL,
- positive cytology

Positive clinical exam with supporting MRI + CSF findings
Positive MRI with supporting clinical + CSF findings
Positive CSF cytology with supporting clinical + MRI findings

Therapeutic approach

¥

Altered general state
Patient/family decision

1

Favorable performance status
ECOG <2/KPS 260

[
: l

Nodular/mixed LMS pattern with
symptomatic lesions

Diffuse LMS pattern

!

1

Surgery

Radiotherapy

Best supportive care

| Systemic/intrathecal chemotherapy
targeted therapy
Immunotherapy

Figure 7. Proposed algorithm for management leptomeningeal spread in glioblastoma.
Abbreviations: CSF, cerebrospinal fluid; ECOG, Eastern Cooperative Oncology Group performance status; KPS, Karnofsky perfor-
mance status; LMD, leptomeningeal disease; LMS, leptomeningeal spread; MRI, magnetic resonance imaging.

Mean overall survival after diagnosis of treated LMS in
high-grade gliomas is 4.94 months (2-9 months) [1, 6, 7,
27, 44, 60, 86, 142]. Exceptional overall survival up to
12 months was reported in cases with nodular LMS for
which surgical resection was possible [83].

Among treated patients, the median overall survival
was higher regardless chemotherapeutic regimen, but the
bias of delivering more intensive treatments in patients in
better performance status should be taken into account [1,
6, 7, 11, 58, 73, 138, 140]. Among studies, there seems to
be a tendency of better survival for patients having
received intrathecal chemotherapy (either Depocyt or thio-
tepa) with mean survival up to 10 months [20, 30]. A better

© AlphaMed Press 2020

survival seems associated with antiangiogenic (6—
7.6 months mean survival) [11, 55, 142] and molecular
targeted therapy when appropriate [11, 24, 25]. Neverthe-
less, all these data need to be validated in prospective
trials.

Despite significant efforts to standardize the response
assessment in LMS, this has proven challenging [154], and it
varies according to clinical trial outcome measures. The
main criteria for assessing objective response in LMS treat-
ments are the improvement of CSF cytology [139, 140] and
radiological decrease of LMS extent [1, 6, 7, 11, 15].

Up to 50% of patients with LMS are treated only by best
supportive care, and considering the symptom severity, we

Oncologist
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need to underline importance of palliative care guidelines
in LMS management [155].

ProcGNosTic FACTORS

Although the reserved prognosis of LMS is well known, data
on the prognostic factors are limited. The interval time from
the initial glioma diagnosis to the LMS diagnosis is a potential
prognostic factor [7] as well as Karnofsky performance status
[30, 82]. Male patients seem to have shorter progression-
free survival, although the impact on overall survival does
not seem significant [30]. Of note, the extent of LMS does
not seem to have a predictive value [1].

CONCLUSION

Data on LMS in patients with GBM remain scarce although
it has become more common in neuro-oncology clinics. The
main problems are the lack of reliable early diagnostic tools
and consensual standard of care.

Based on our review of the literature, multimodal
treatment of LMS, including surgery, radiotherapy, chemo-
therapy and/or best supportive care, is a suitable approach
to be discussed during multidisciplinary brain tumor board.

Interestingly, given the advances in glioma therapeutics,
including molecular targeted therapies and immunotherapies,
the landscape of LMS treatment is evolving. However, investiga-
tion of these innovative treatments remains limited in the setting
of LMS and needs further studies. Given the dismal prognosis

and increasing incidence of this GBM complication, identification
of risk factors, biomarkers, and efficient therapeutic options in
large prospective studies and clinical trials is warranted.
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